
5. 入出力インピーダンスと電圧・電流利得

5. Input / Output Impedance and Voltage / Current Gain

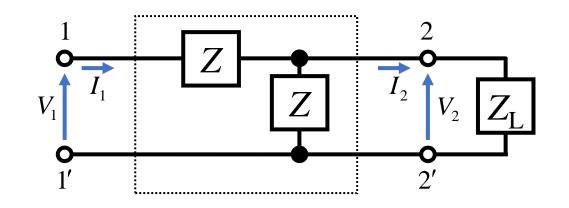
講義内容

- 1. 入出力インピーダンス
- 2. 電圧利得 (ゲイン)
- 3. 電流利得

入力インピーダンス

端子1から見込んだインピーダンス (入力インピーダンス) は

$$Z_{\text{in}} = \frac{V_1}{I_1} = \frac{AV_2 + BI_2}{CV_2 + DI_2} = \frac{AZ_LI_2 + BI_2}{CZ_LI_2 + DI_2} = \frac{AZ_L + B}{CZ_L + D}$$


終端開放時

$$Z_{\text{in}} = \lim_{Z_{\text{L}} \to \infty} \frac{A + \frac{B}{Z_{\text{L}}}}{C + \frac{D}{Z_{\text{L}}}} = \frac{A}{C}$$

終端短絡時

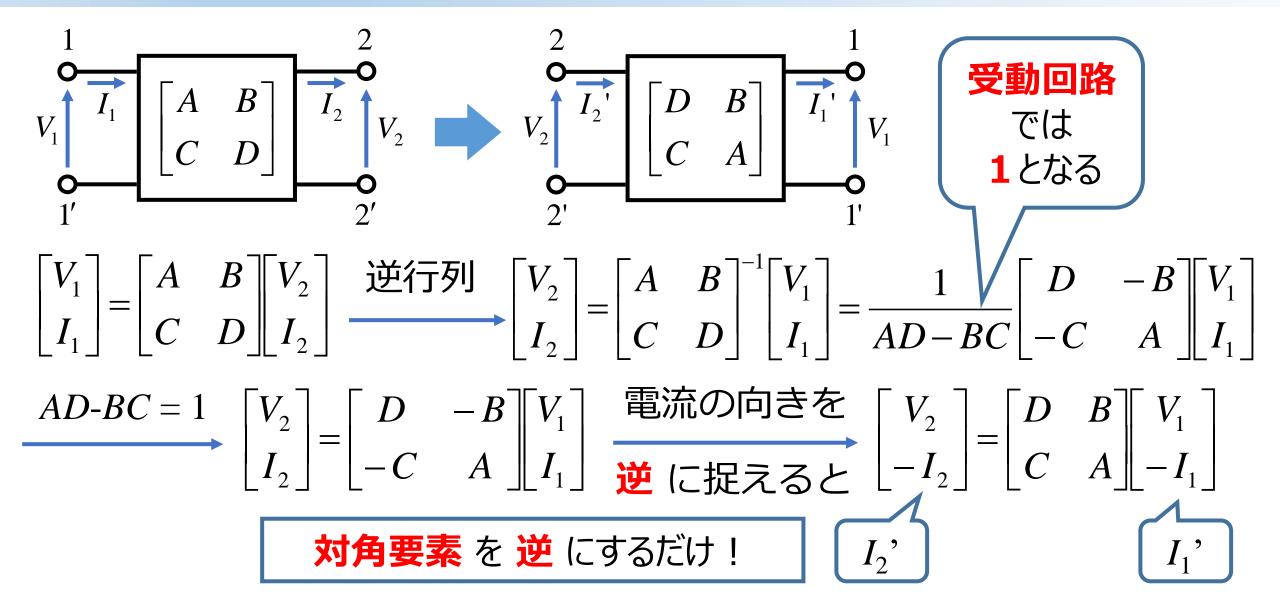
$$Z_{\rm in} = \lim_{Z_{\rm L} \to 0} \frac{AZ_{\rm L} + B}{CZ_{\rm L} + D} = \frac{B}{D}$$

例:入力インピーダンスの計算

枠内の F 行列(F)は

$$[F] = \begin{bmatrix} 1 & Z \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1/Z & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & Z \\ 1/Z & 1 \end{bmatrix}$$

よって,
$$\begin{cases} V_1 = 2V_2 + ZI_2 \\ I_1 = (1/Z)V_2 + I_2 \end{cases}$$


 $Z_{\rm L}$ で終端されているので $V_2 = Z_{\rm L}I_2$

以上より、入力インピーダンス Z_{in} は

$$Z_{\text{in}} = \frac{V_1}{I_1} = \frac{2V_2 + ZI_2}{(1/Z)V_2 + I_2}$$

$$= \frac{2Z_LI_2 + ZI_2}{(1/Z)Z_LI_2 + I_2} = \frac{2Z_L + Z}{(1/Z)Z_L + 1}$$

回路を反転すると…

受動回路は相反回路か?

受動 回路: 受動 素子で構成された回路

受動 素子: 供給 された電力を 消費・蓄積・放出 する素子

: R : C : L

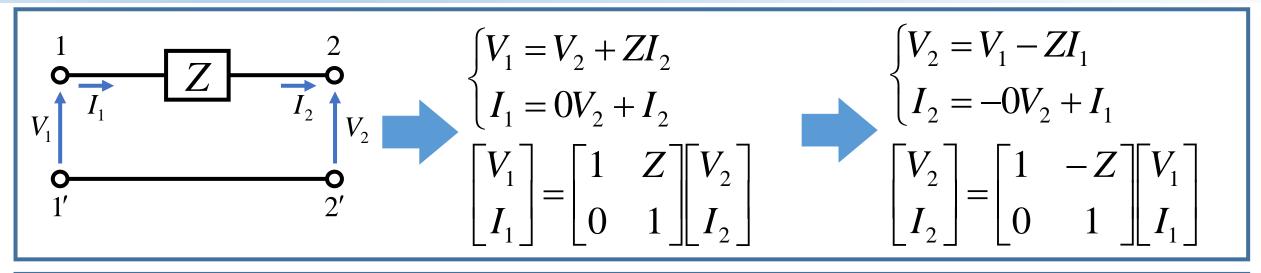
増幅・整流 などの 能動 動作を行わない素子

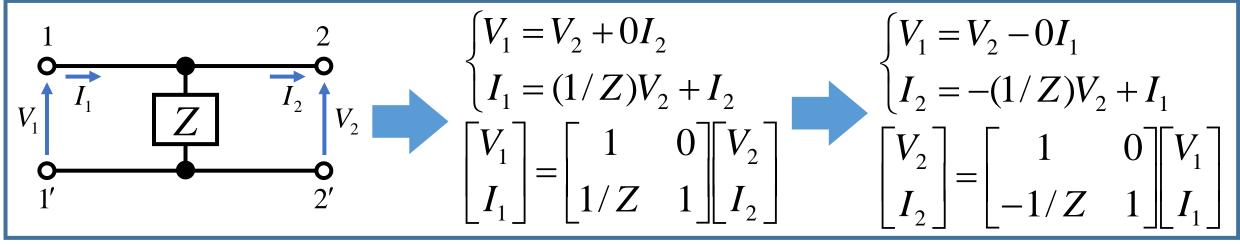
受動 素子の例

抵抗

・キャパシタ

インダクタ (リアクトル)

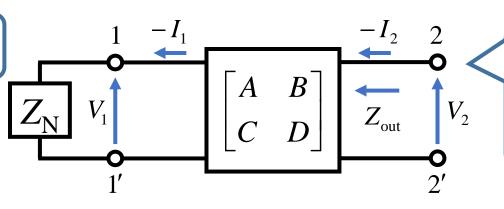

- 変圧器(トランス)
- 圧電素子
- 水晶振動子


インピーダンス

$$Z = R + jX = R + j\left(\omega L - \frac{1}{\omega C}\right)$$

で表現可能

受動回路は相反回路か?


電流 を再定義することで、電圧 の向きも正しくなる

行列式 も 1 になる

出力インピーダンス

入力にインピーダンスを接続

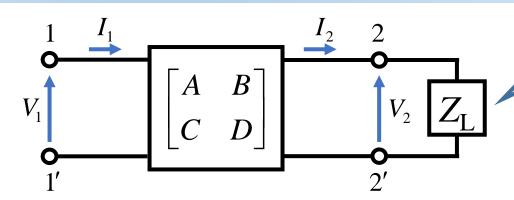
オームの法則より, $V_1=Z_{\mathrm{N}}(-I_1)$

電流 の 向きを <mark>逆</mark> に捉える

端子2から見込んだインピーダンス(出力インピーダンス)は

$$Z_{\text{out}} = \frac{V_2}{-I_2} = \frac{DV_1 + B(-I_1)}{CV_1 + A(-I_1)} = \frac{DZ_{\text{N}}(-I_1) + B(-I_1)}{CZ_{\text{N}}(-I_1) + A(-I_1)} = \frac{DZ_{\text{N}} + B}{CZ_{\text{N}} + A}$$

端子1が開放の時


端子1が短絡の時

$$Z_{\rm N} \to \infty$$
 $Z_{\rm out} = \frac{D}{C}$

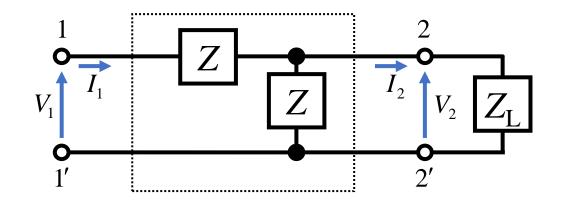
$$Z_{\rm N} \to 0$$
 $Z_{\rm out} = \frac{B}{A}$

反転 させた **回路** の **入力インピーダンス**

電圧利得(ゲイン)

負荷インピーダンスで終端 オームの法則より, $V_2=Z_{\rm L}I_2$

端子2をZ」で終端した場合のゲインG、は


$$G_{\rm v} = \frac{V_2}{V_1} = \frac{V_2}{AV_2 + BI_2} = \frac{Z_{\rm L}I_2}{AZ_{\rm L}I_2 + BI_2} = \frac{Z_{\rm L}}{AZ_{\rm L} + B}$$

端子2を **開放** した場合($Z_{r}=\infty$), ゲイン G_{v} は **最大**

$$G_{v} = \lim_{Z_{L} \to \infty} \frac{Z_{L}}{AZ_{L} + B} = \lim_{Z_{L} \to \infty} \frac{1}{A + \frac{B}{Z_{L}}} = \frac{1}{A}$$

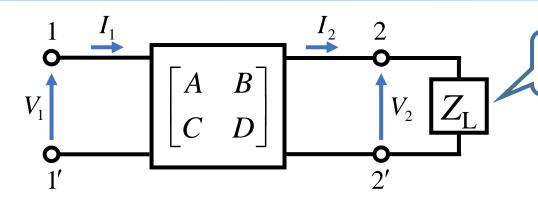
入力 から **出力** にかけて 回路内で 電圧が 何倍 になるかを表す

例:ゲインの計算

枠内のF行列(F)は

$$[F] = \begin{bmatrix} 1 & Z \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1/Z & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & Z \\ 1/Z & 1 \end{bmatrix}$$

よって,
$$\begin{cases} V_1 = 2V_2 + ZI_2 \\ I_1 = (1/Z)V_2 + I_2 \end{cases}$$


 $Z_{\rm L}$ で終端されているので $V_2 = Z_{\rm L}I_2$

以上より、電圧ゲイン G_{v} は

$$G_{v} = \frac{V_{2}}{V_{1}} = \frac{V_{2}}{2V_{2} + ZI_{2}}$$

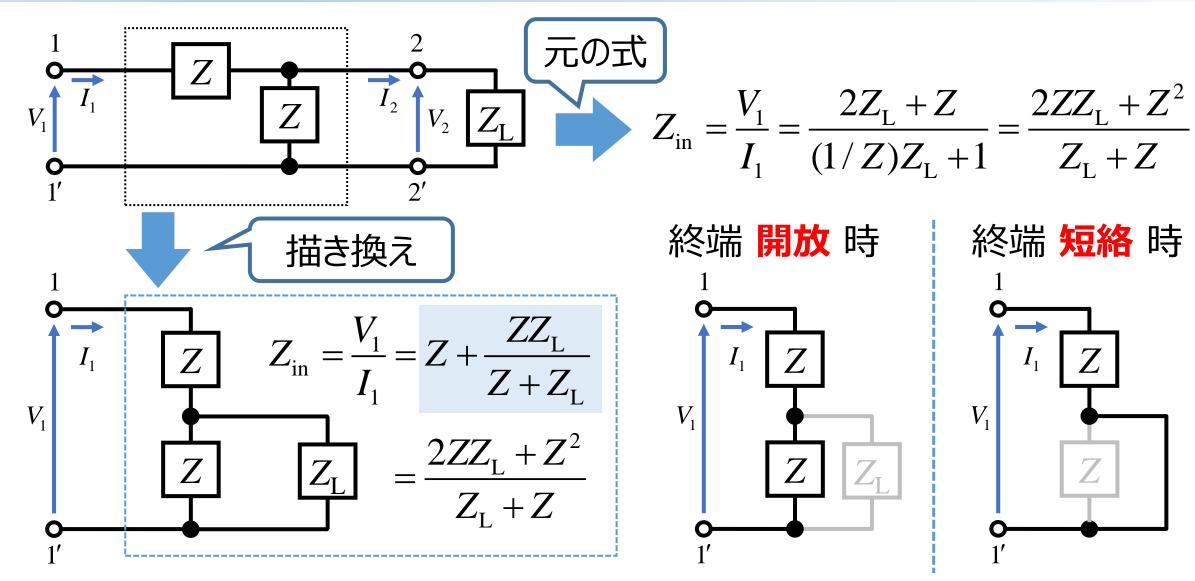
$$= \frac{Z_{L}I_{2}}{2Z_{L}I_{2} + ZI_{2}} = \frac{Z_{L}}{2Z_{L} + ZI_{2}}$$

電流利得

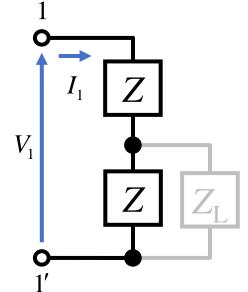
負荷インピーダンスで終端

オームの法則より、 $V_2=Z_{\rm L}I_2$

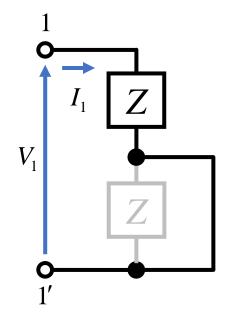
端子2を Z_L で終端した場合のゲイン G_i は

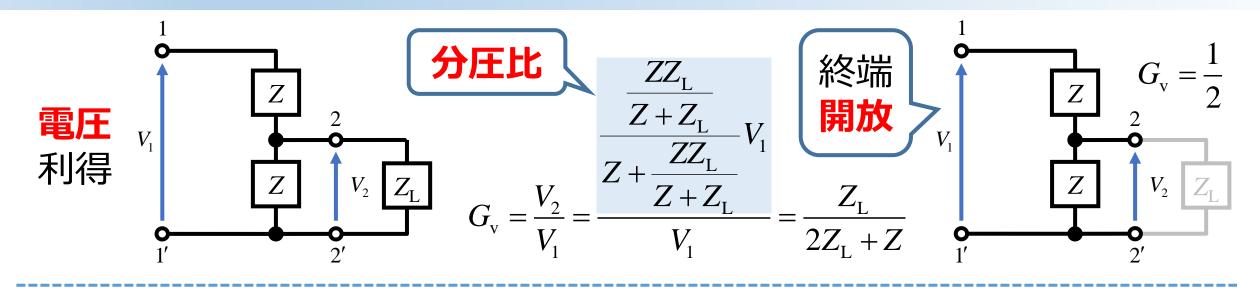

$$G_{\rm i} = \frac{I_2}{I_1} = \frac{I_2}{CV_2 + DI_2} = \frac{I_2}{CZ_{\rm L}I_2 + DI_2} = \frac{1}{CZ_{\rm L} + DI_2}$$

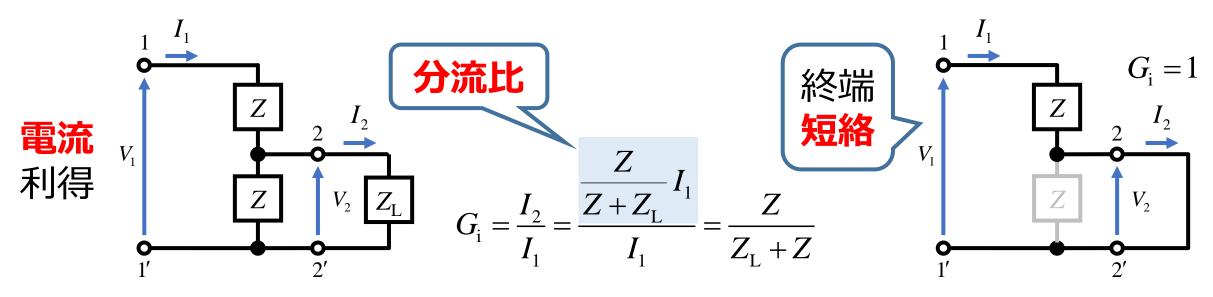
端子2を 短絡 した場合($Z_{\rm L}=0$), ゲイン $G_{\rm i}$ は 最大


$$G_{\rm i} = \lim_{Z_{\rm L} \to 0} \frac{1}{CZ_{\rm I} + D} = \frac{1}{D}$$

入力 から 出力 にかけて 回路内 で 電流 が 何倍 になるかを表す


電気回路の基本計算から求める入力インピーダンス


終端開放時



終端短絡時

電気回路の基本計算から求める電圧利得/電流利得

