26. フーリエ級数展開の応用

26. Application of the Fourier Series Expansion

講義内容

- 1. 変数変換(時間 $t \Rightarrow$ 角度 θ)
- 2. フーリエ分析の例
- 3. 計算上便利な性質

周期関数は時間 t [sec] の関数として表されるが, 位相角 θ [rad] の関数として記述されることも多い

t から θ に 変数変換 した場合の フーリエ級数展開

$$v(t) = a_0 + a_1 \cos \omega t + a_2 \cos 2\omega t + \cdots + a_k \cos k\omega t + \cdots$$

$$+ b_1 \sin \omega t + b_2 \sin 2\omega t + \cdots + b_k \sin k\omega t + \cdots = a_0 + \sum_{k=1}^{\infty} (a_k \cos k\omega t + b_k \sin k\omega t)$$

$$\theta = \omega t = \frac{2\pi}{T}t$$

$$d\theta = \frac{2\pi}{T}dt \Rightarrow dt = \frac{T}{2\pi}d\theta$$
$$t: 0 \to T \Rightarrow \theta: 0 \to 2\pi$$

$$v(\theta) = a_0 + a_1 \cos \theta + a_2 \cos 2\theta + \cdots + a_k \cos k\theta + \cdots + b_1 \sin \theta + b_2 \sin \theta + \cdots + b_k \sin k\theta + \cdots$$

$$+b_1 \sin \theta + b_2 \sin \theta + \cdots + b_k \sin k\theta + \cdots = a_0 + \sum_{k=1}^{\infty} (a_k \cos k\theta + b_k \sin k\theta)$$

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} v(\theta) d\theta$$

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} v(\theta) d\theta \qquad a_k = \frac{1}{\pi} \int_0^{2\pi} v(\theta) \cos k\theta d\theta \qquad b_k = \frac{1}{\pi} \int_0^{2\pi} v(\theta) \sin k\theta d\theta$$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} v(\theta) \sin k\theta d\theta$$

※ **積分範囲** は 1周期 であればよい。例えば、 $-\pi \sim \pi$ もよく利用される

例題:フーリエスペクトル

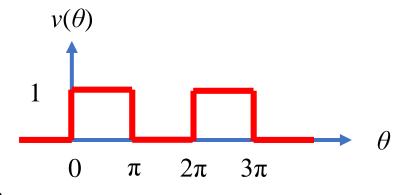
図の方形波 $v(\theta)$ をフーリエ級数展開し、そのフーリエスペクトルを図示せよ。

$$0 < \theta < \pi$$
 で $v(\theta) = 1$, $\pi < \theta < 2\pi$ で $v(\theta) = 0$ なので

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} v(\theta) d\theta = \frac{1}{2\pi} \int_0^{\pi} d\theta = \frac{1}{2}$$

$$a_k = \frac{1}{\pi} \int_0^{2\pi} v(\theta) \cos k\theta d\theta = \frac{1}{\pi} \int_0^{\pi} \cos k\theta d\theta = \frac{1}{\pi} \left[\frac{1}{k} \sin k\theta \right]_0^{\pi} = 0$$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} v(\theta) \sin k\theta d\theta = \frac{1}{\pi} \int_0^{\pi} \sin k\theta d\theta = \frac{1}{\pi} \left[-\frac{1}{k} \cos k\theta \right]_0^{\pi} = \frac{1}{k\pi} (1 - \cos k\pi)$$

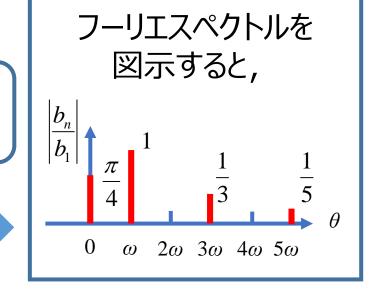


ここで, k が偶数の時: $1-\cos k\pi=0$ k が奇数の時: $1-\cos k\pi=2$ ※基本派成分が

以上より, $v(\theta)$ をフーリエ級数展開すると,

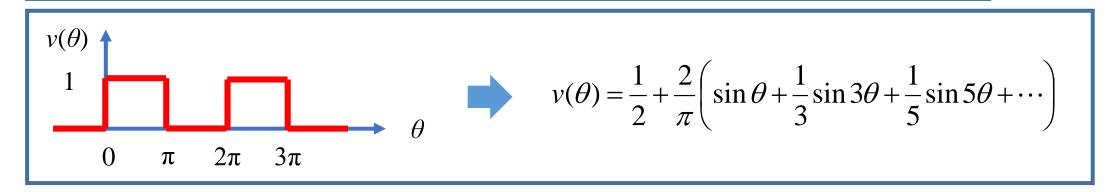
1 となるように 規格化

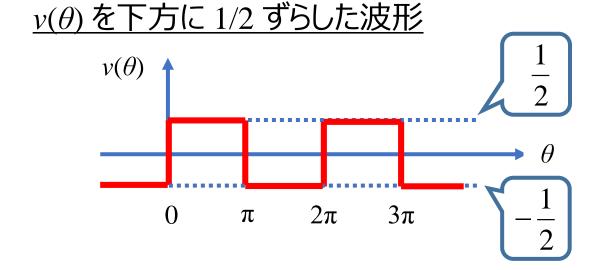
$$v(\theta) = \frac{1}{2} + \frac{2}{\pi} \left(\sin \theta + \frac{1}{3} \sin 3\theta + \frac{1}{5} \sin 5\theta + \cdots \right) = \frac{2}{\pi} \left(\frac{\pi}{4} + \sin \theta + \frac{1}{3} \sin 3\theta + \frac{1}{5} \sin 5\theta + \cdots \right)$$



性質①:原点の移動-1

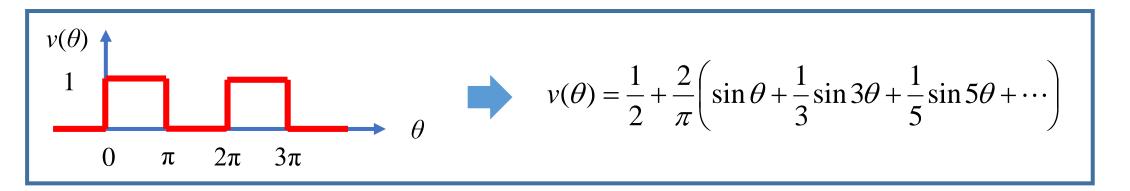
ある非正弦波交流のフーリエ展開式が 分かっている とき,原点を移動した波形のフーリエ展開式は容易に求めることができる

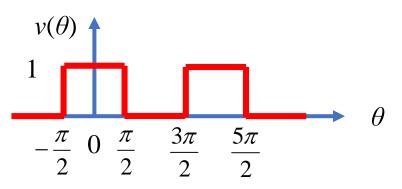




$$f(\theta) = v(\theta) - \frac{1}{2}$$
$$= \frac{2}{\pi} \left(\sin \theta + \frac{1}{3} \sin 3\theta + \frac{1}{5} \sin 5\theta + \cdots \right)$$

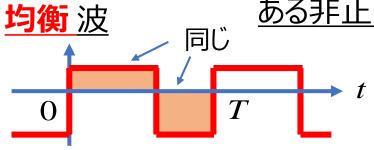
性質①:原点の移動-2





$$270^{\circ} = 90^{\circ}$$
 ($\sin\theta \Rightarrow \cos\theta$) + 180° (反転)

性質②:対称性の効果

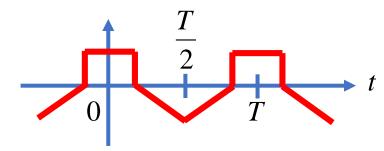


<u> ある非正弦波交流が **対称性** を持つ場合,フーリエ解析が **少し容易** になる</u>

直流 分が ゼロ なので

$$a_0 = 0$$
 ※積分計算するまでもなく!

軸対称 波



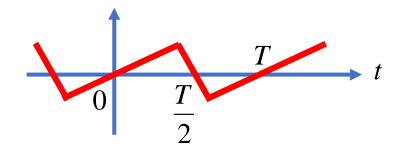
v(t) = v(-t) の関係を持つ 偶 関数の波形 \Rightarrow 奇 成分は ゼロ 波形の 軸対称 性 \Rightarrow 半周期 積分の 2 倍

$$a_0 = \frac{2}{T} \int_0^{T/2} v(t)dt \qquad a_k = \frac{4}{T} \int_0^{T/2} v(t) \cos k\omega t dt$$

$$a_0 = \frac{1}{T} \int_0^{T/2} v(\theta) d\theta \qquad a_k = \frac{2}{T} \int_0^{T/2} v(\theta) \cos k\theta d\theta$$

$$b_k = 0$$

点対称 波



v(t) = -v(-t) の関係を持つ 奇 関数の波形 \rightarrow 偶 成分は ゼロ 波形の 点対称 性 \rightarrow 半周期 積分の 2 倍 しかも 均衡波

$$a_0 = 0 a_k = 0 b_k = \frac{4}{T} \int_0^{T/2} v(t) \sin k\omega t dt b_k = \frac{2}{\pi} \int_0^{\pi} v(\theta) \sin k\theta d\theta$$

フーリエ級数展開のまとめ①

時間の関数で与えられる場合

$$v(t) = a_0 + a_1 \cos \omega t + a_2 \cos 2\omega t + \cdots + a_k \cos k\omega t + \cdots$$
$$+ b_1 \sin \omega t + b_2 \sin 2\omega t + \cdots + b_k \sin k\omega t + \cdots = a_0 + \sum_{k=1}^{\infty} (a_k \cos k\omega t + b_k \sin k\omega t)$$

$$a_0 = \frac{1}{T} \int_0^T v(t) dt$$

$$a_0 = \frac{1}{T} \int_0^T v(t) dt$$

$$a_k = \frac{2}{T} \int_0^T v(t) \cos k\omega t dt$$

$$b_k = \frac{2}{T} \int_0^T v(t) \sin k\omega t dt$$

$$b_k = \frac{2}{T} \int_0^T v(t) \sin k\omega t dt$$

(角度)の関数で与えられる場合

$$v(\theta) = a_0 + a_1 \cos \theta + a_2 \cos 2\theta + \cdots + a_k \cos k\theta + \cdots + b_1 \sin \theta + b_2 \sin 2\theta + \cdots + b_k \sin k\theta + \cdots = a_0 + \sum_{k=1}^{\infty} (a_k \cos k\theta + b_k \sin k\theta)$$

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} v(\theta) d\theta$$

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} v(\theta) d\theta$$

$$a_k = \frac{1}{\pi} \int_0^{2\pi} v(\theta) \cos k\theta d\theta$$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} v(\theta) \sin k\theta d\theta$$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} v(\theta) \sin k\theta d\theta$$

フーリエ級数展開のまとめ②

問題に波形が与えられたら… ⇒ まず, 波形の対称性を確認!

軸 対称波	点 対象波	均衡 波	対称性無し
$\boldsymbol{b}_k = 0$	$a_0 = 0$, $a_k = 0$	$a_0 = 0$	
半 周期分の波形を関数で表現		1周期分の波形を関数で表現	
a₀ と a _k を 半 周期積分計算	b _k のみ 半 周期積分計算	a _k とb _k を 1 周期積分計算	全ての係数を 1 周期積分計算

波形 g(t) がすでにフーリエ級数展開した波形 v(t) の原点移動だったら...

 \Rightarrow 波形 v(t) の 展開式 を 有効活用

横軸 方向に a の方向	縦軸 方向に 6 の移動	斜め 方向の移動
$g(t) = \mathbf{v}(t-a)$	$g(t) = \mathbf{v}(t) + \mathbf{b}$	$g(t) = \mathbf{v}(\mathbf{t} - \mathbf{a}) + \mathbf{b}$